Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars

Por um escritor misterioso

Descrição

Scientific Article | Este trabalho apresenta protocolos de microfabricação para alcançar cavidades e pilares com perfis reentrantes e duplamente reentrantes
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS)
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Biomimetic Coating-free Superomniphobicity
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Flowchart listing key steps involved in the microfabrication of
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Gradient wettability induced by deterministically patterned nanostructures
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
PDF) Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
PDF) Counterintuitive Wetting Transitions in Doubly Reentrant Cavities as a Function of Surface Make-Up, Hydrostatic Pressure, and Cavity Aspect Ratio
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Biomimetic Coating-free Superomniphobicity. - Abstract - Europe PMC
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
PDF) Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
The pipeline of reflection decomposition algorithm.
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
A molecular to macro level assessment of direct contact membrane distillation for separating organics from water - ScienceDirect
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces
de por adulto (o preço varia de acordo com o tamanho do grupo)